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An automatic sequence is generated by a finite machine (automaton). These 
sequences can be periodic or not: in the latter case however, they are not ran- 
dom, but rather "quasicrystalline." We consider an lsing chain with variable 
interaction in a uniform external field, at zero temperature, and prove that, if 
this interaction is automatic, then the induced magnetic field is also automatic. 

KEY W O R D S :  Ising chain; finite automata; substitutions. 

1. I N T R O D U C T I O N  

The cyclic Ising chain with variable interaction ~qJ (eq = + 1), and uniform 
external field H is described through the Hamiltonian 

N - - I  N l 

= - j  - H 
q = 0  q = 0  

where N is the number of sites, #q = +1, and #0 =/~N' The eq'S are given 
with prescribed values + 1. The solution of the model involves the study of 
the partition function at temperature T: 

ZN(T ) = ~ exp[ - f lH(p)] 
,u 

=~exp J eql~ql~q+ l + Hfl 2 [.lq 
p \ q = O  q = 0  

where fl = 1/kT is the inverse of the temperature and where the outer 
summation is extended over the 2 N different configurations p =  
(#0,#1 ..... #N-~)  in { - 1 ,  + 1 }  N. 
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Define 
z = exp(fiJ) and ~ = H/J 

and consider the transfer matrices 

It is well known that 

= ( z  ~+~q z . . . .  q )  

I N- 1 t Z N ( T ) = T r  l-I Mq 
\ q = 0  

and that the free energy of the infinite chain is given by the thermodynamic 
limit 

lim log Tr l-[ Mq 
N ~ o o  q = 0  

Following the ideas of B. Derrida (Derrida, (3/ Derrida, Vannimenus, and 
Pomeau, (4) Gardner, and Derrida (6), we shall restrict our study to the 
behavior of the chain at the limit T =  0. 

The previous authors were interested in a random distribution of the 
eq'S. Here we shall consider a distribution of the eq'S generated by finite 
automata or substitutions (to be defined in Section 3). These sequences, 
known as "automatic" sequences, may be periodic or not. In the latter case, 
they stand somewhere between periodicity and randomness, closer however 
to periodicity. The structure is said to be "quasicrystalline." 

We were very much influenced by F. Axel, M. K16man, and J. 
Peyri6re, whom we met once a month in Paris during the academic year 
1984-1985. During these sessions we discussed together problems' devoted 
to one-dimensional physics and automata theory. Independently of these 
meetings, we had some very fruitful discussions with Derrida. Finally G, 
Rauzy sent us an independent proof of Theorem 2. We express our war- 
mest thanks to our five friends. 

2. THE L IMIT  T = 0  

As T vanishes, z increases to infinity and hence in the product of the 
matrices mq one  should only keep track of the higher powers of z. Given 
an arbitrary vector Vo in R 2, define the vector 

N--1  

v.=- 1-I M. Vo 
q ~ 0  
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In the limit T =  0, 
/ p . S " \  

where p . ,  q.,  a . ,  and b. are nonzero constants (independent of z). 
The difference d. = a ~ -  b. plays the role of the magnetic field of the 

chain at site n for T = 0 .  In Ref. (3), Derrida observes that the double 
sequence a . ,  b. satisfies the recurrence relation 

a ,+  1 = max(a, + e,, b , -  e,) + ~ 

b,+ l = max(a , -  e,, b, + e , ) - a  

Our purpose is to study the sequence (d,) when (e,) is a given 
automatic sequence. We shall demonstrate the following result: 

Theorem 1. Consider an infinite quasicrystal Ising chain in a 
uniform external field. Let d, be the magnetic field induced on the nth site 
at T =  0. The sequence (dn) is automatic. In other terms the quasicrystalline 
structure of the Ising chain induces a quasicrystalline output. 

Our result is not surprising. The proof however is not completely 
trivial. We devote the following sections to some definitions and to the 
proof of Theorem 1, which, as we shall see, is an easy consequence of a 
general result concerning automatic sequences (our Theorem 2). 
Theorem 2 is in itself interesting and we hope to find other applications in 
the near future, possibly in the general theory of automata and in number 
theory. 

3. S U B S T I T U T I O N S  A N D  A U T O M A T I C  S E Q U E N C E S  

Let A be an alphabet, i.e., a finite set. Elements of A are called letters 
and finite sequences of letters are called words. Let q ~> 2 be a given integer. 
Consider a map (q-substitution) S from A to A q and suppose that there 
exists a letter a in A such that the word S(a) begins with a. Applying S to 
S(a) means to replace every letter ai of S(a) by S(ai). One thus obtains the 
word S2(a) of length q2. One can then consider the words S3(a), S4(a) .... 
and so on. After infinitely many iterations, we thus obtain an infinite 
sequence u=(uo, ul .... ) in A N which is invariant by S:s(u)=u. The 
sequence u is a fixed point of the mapping S. 

Suppose there exist a set X and a map p from A to Jr, called projec- 
tion. The sequence p(u)= (p(uo), p(ul),,..) in X N is said to be generated by 
the substitution S and the projection p. We shall also say that this sequence 
is q-automatic (or simply automatic) or quasicrystalline. 
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Periodic sequences and ultimately periodic sequences are automatic. 
For example, the substitution S defined by 

S(a) = aba 

S(b) = bab 

followed by the identity map p generates the periodic sequence 

u = abababababababa... 

The celebrated (nonperiodic) Thue-Morse sequence is generated in the 
same fashion: 

S(a) = ab 

S(b) = ba 

p(a)  = a 

p(b)=b 

Its first terms are 

abbabaabbaababbabaababbaabbabaabbaab... 

Note that we have voluntarily limited our discussion to constant 
length substitutions, excluding by there Penrose-type substitutions. 

4. A U T O M A T A  

Let q >~ 2 be a given integer. A q-automaton ~4 is composed.of a finite 
set of states A~, A2 ..... A ,  (in the example below q = 2 and s = 3), A~ is the 
initial state, q arrows 0, 1,..., q -  1 join each state to a state, and an output 
function T maps the set of states {A~, A~,..., A,} into some finite set X: 

0 A2 

1 @ 1  T(A1)=T(A2)=XT(A3) = y 

0 A3 

The automaton acts on the sequence of integers 0, 1, 2 .... as follows. Let n 
be an integer which we express in base q: 

n = d k _ l d k _ z ' " d l d o ,  di=O, 1 ..... q - l ,  and d k _ l # O  i f n # O  
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Starting from the initial state AI,  we follow the instructions 
dk_ ~, dk _ 2 ..... dl, do in that order, sending the automaton from state A ~ to 
some final state Aj after k operations. 

For  instance, if n = nineteen = 10011, then on our example 

A1 & A1 ~ A2 ~ A3 & A2 1A3 

We then read off the output T(A3)~ y. To every integer n corresponds an 
element x ,  of X. We say that the infinite sequence (x0, x~ .... ) in X N is 
generated by the automaton .~. In our example the sequence begins with 

xxxxyyxxxxxxyyxxx... 

The Thue-Morse  sequence is generated by the following 2-automaton: 

1 

O ~  0 T(A1)=a 
T(A2) = b 

so that we now have two independent definitions of the same sequence. 
Actually the situation is quite general. It can be indeed shown that a 
sequence is generated by q-automaton if and only if it is generated by a 
q-substitution and a projection (see Cobham (2) or Christol et al., ~ where 
the relationship with regular languages is also discussed). 

We now describe another general result concerning automatic  sequen- 
ces and which will be crucial in the proof  of Theorem l. 

5. MORE A B O U T  AUTOMATIC S E Q U E N C E S  

Let X be an alphabet on which is defined an associative operation ,. 

T h e o r e m  2. Let x=(x(n)) be a q-automatic sequence on the 
alphabet X. The sequence y = (y(n)) defined by 

y(1)=x(o) 

y(2) = x ( 1 )  �9 x(0) 

y(n)=x(n-- 1), x(n--2),... ,  x(0) 

is q-automatic. 
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Vn~>O, 

Vn>~O, Vj>~O, 

Vn>~l, 

vj,  

(hence Yo = Y) 

Proof. We first add, if necessary, a neutral element e to X; we will 
then prove that the sequence (y(n))~>~o is q automatic, where for example 
y(0) = e. The proof proceeds in four steps: 

(i) We first introduce the sequences xl ,  x2, x3 .... obtained by group- 
ing q (resp. q2, q3,...) terms of x together and calculating their , product. 
We then define the sequences yj = (yj(n)) by 

y j ( n ) = x ~ ( n -  1) , - . - ,  xj(0) 

(ii) We then prove that the sequences xj are "uniformly q-automatic" 
(i.e., obtained by projections from the same fixed point of a certain 
q-substitution). 

(iii) We deduce that the set of all sequences yj is actually finite. 

(iv) We finally construct a finite set of sequences W, containing the 
yfs and with the property: for every v in W, for every r in [0, q -  1 ], the 
sequence n -* v(qn + r) belongs to W. 

This will prove (see Ref. 5, p. 107) that all the sequences yj, and hence 
y, are q-automatic. 

(a) The xj and the yj. We define 

xo (n )=x(n )  

xj+ l(n) = xi(qn + q - 1 ) �9 xj(qn + q -  2) , . ' .  * xj(qn) 

y j ( n ) = x j ( n -  1) * . ' . *  xj(0) 

y j (0 )  = e 

Remark. For every n>~0, we have y/(qn)=yj+~(n).  The result is 
clear for n = 0; for n ~> 1 we have 

yj(qn) = x j ( q n -  1) , . . . ,  xj(0) 

-=(x j (q(n-  1 ) + q -  1) * . . . ,  x i ( q ( n -  1 ) ) ) , . , . ,  

(xj(q- 1) , - - . ,  x j (o ) )  

=Xj+l(n- l)  * ' ' ' *  Xj+ 1(0 ) 

= y ~ §  

(b) The sequences xj are uniformly q-automatic. More precisely, we 
prove the following proposition: 
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Proposition. There exist an alphabet B, a q-substitution 
S = S o S I " " S q _ ~  on B, (where Si is a map on B) and a sequence (b(n))~ 
with terms in B such that 

Vj~>O 3~.: B ~ A  Vn~>O f j ( b ( n ) ) = x j ( n )  

The main theorem of Christol et aL (~) provides us with an alphabet B, 
a q-substitution S =  S o S ~ ' " S q _  1 on B, a sequence (b(n))  with terms in B 
and a map f f r o m  B to A, such that (i) the sequence b is a fixed point of S, 
i.e., gr ~ [0, q -  1 ], Sr(b(n))  = b(qn + r); (ii) for every n ~ O, f ( b ( n ) )  = x(n).  

This proves our proposition for j = 0 ,  with f0 = f  Let us prove by 
recurrence on j that this choice of B, S, b fits for every j: 

To get fj+~ from.~, it suffices to put 

f:+ l(X) = f A s q _  l (x) )  , ' . .  �9 f j (So (x ) )  

hence 

f:+ l(b(n))= fj(Sq_ l(b(n))) , . . . ,  f:(So(b(n)t) 

= fAb(qn + q -  1)) * . . .  * f j (b(qn))  

= xs(qn + q -  1) * . . .  �9 xj(qn) 

= x j , ~ ( n )  

(c) there is a f ini te  number o f  sequences Ys" There is a finite number 
of sequences xj: the proposition above defines an injection from the set of 
the sequences xj into the set of the maps from B to A (xj ~ f i ) ;  hence the- 
finiteness of the Ys set. 

(d) the set W. Define W to be set of all sequences n ~  
(g(b(n))  * yj(n)),  where g is an application from B to A and j an integer. 
This set is finite: g and yj run through finite sets; moreover it contains y 
(take g constant equal to e and j =  0). 

Finally if (v(n)) is a sequence in W, then for every r in [0, q -  1] let us 
prove that the sequence n-~  v(qn + r) also lies in W: if 

then 

v(n) = g(b(n))  �9 yj(n)  

v(qn + r) = g(b(qn + r)) �9 yj(qn + r) 

= g(Sr(b(n)))  * [xj(qn + r -  1) * ' -"  * xj (qn)]  �9 yj(qn) 
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(the bracket is empty for r = 0); hence 

v(qn + r) = g(Sr(b(n))  * [ f j (S  r l(b(n))) * ' "  * f j (So(b(n)))  ] * yj(qn) 

= h(b(n)) * y;+ l(n) 

where h is defined by 

h ( x )  = g ( S r ( x ) )  �9 [ f j ( S r - ~ ( x ) )  , - . .  �9 f j (So(x ) ) ]  

Our Theorem 2 is thus established. | 

6. P R O O F  OF T H E O R E M  1 

Recall that (as) and (b~) satisfy the recursion formulas: 

{ a~+l = ~ + max{an + en, b ~ -  ~n} 

bn+l = - -~+  max{a~--en, b ~ -  en} 

The magnetic field d, = a ~ -  bn is then the solution of the recursion 

{ d~ + t = 2~ + e~ sgn(d~)rain{2, Idol} (1) 

do = a0 - bo 

where sgn(. ) is the sign function. 
Clearly 

Vn~> 1, 2 e - 2 4 d  e 4 2 e + 2  

Moreover it is easy to prove that 

Vn~>0, d ~ e { 2 n o ~ - t - d o ; n e Z } ~ o { 2 n ~ + _ 2 ; n ~ Z }  

so that d~ takes only finitely many values. Call Y the set of values of d~. 
Define two maps on Y by 

f l (x )  = 2a + (sgn x) min{2, Ix} } 

f _ j ( x )  = 2c~ - (sgn x) min{2, }x[} 

Relation (1) can then be written 

d .+ j  = f,o(d~) 

so that 

d .+~--f~ of~_Lo ""  oLo(do) for every n>~0 
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It is now obvious from Theorem 1 that the sequence (g~) of maps defined 
by 

go = id 

g~+ 1= f~.~ f~,,-~ ~ "'" ~ for every n ~>0 

is automatic, provided (G) is automatic. The sequence tin+ 1 = g,+ l(d0) is 
thus automatic. 

7. AN EXPLICIT EXAMPLE 

Suppose ~ = 1, then 

d,, +1 = 2 + G sgn(d~) rain{2, Id, I} 

Choose d0=2.  The above relation shows that d, takes its values in 
{0, 2, 4}. It is then natural to define: 

d'~= - 1  + (d~/2)e { - 1 ,  O, 1} 

whence 

d'~+l = en(1 + rain{0, d'~ }) =f ' , (d 'n )  

d ; = O  

We now assume that the sequence (e,,) is the Thue-Morse  sequence defined 
on the symbols + and - ,  

(G) = + - - + - + + - - + + - + - - + - + + - +  . . . .  

the sequence d ' =  (d;,) hence begins as follows: 

( d ~ , ) = O + - O + - O + - O +  + - 0 - 0 + - 0 + - 0 - 0 +  + - 0 + - 0 . - .  

Actually the first two terms are, to some extent, inessential: had we 
choosen other initial conditions, the resulting sequences would coincide 
with (d'n) from d; on. 

Instead of studying (d'~) which, according to Theorem 2, seems to 
require a 108-state automaton, we rather consider the shifted sequence 
(d',+2) which happens to be much simpler. Needless to say (d'~) is 
automatic if and only if (d', + 2) is itself an automatic sequence. 
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Let us thus prove that the sequence (d'.+2) is generated by the sub- 
stitution defined on the alphabet {A, B, C, D, E} by 

S ( A ) = A B  

S (B)  = CA 

s ( c )  = D E  

S ( D )  = C E  

S ( E )  = A D  

followed by the projection P 

P ( A )  = - 

P(B)  = P(D)  = 0 

P(C)  = P(E)  = + 

Let (un) be the fixed point of S, hence 

(un)= (A B C A  D E A  B C E A  D A B C A  D E A  D . , . )  

and let (v . )  be the pointwise projection of (u.), hence 

We claim that 

Vn >i O, v .  = P(u.,) 

Vn>~O, v . = d ' . + 2  

First of all, let So and S~ be the components of S, i.e., 

S o ( A ) =  A, S ~ ( A ) =  B 

So(B) = C, S~(B) = A 

s0(c) = D,  S , ( C )  = E 

So(D) = C, S I (D)  = E 

S o ( E ) = A  , S ~ ( E ) = D  

As (u.)is  the fixed point of S, we then have 

Vn ~ O, u2. = So(U.) 

U2n+l = SI(Un) 
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patient reader can check the following (nonindependent) 

4__ 2 $3S1 = S o S l  So - So, 

S 1 8 3 = 5 1 5 0 ,  S 1 S 2 S 1 ~ - S  1SOs1 

S o S 1 S  2 = SoS1 So , ( S o S  1 ) 2  = SoS2  

2 2 _  2 S ~ S o S I = S ~ S 1  S~ S O - S t So, 

$2S1 So $2S1 ,  2 2 __ 2 = So $1 - $1 So 

(S lSo)2=S1SoS1 ,  S~SoS~=S1So  

So S~ So = So S~, So S~ = So $1 

S~ S 0 ~- S 1 So ' S14 ~_ S12 

These relations, respectively, imply, for every n ~> 0 

/ ' /16n ~ L/4n~ U 1 6 n + 8  ~ U 4 n + 2  

/At6n + 1 ~ U4n  + I ~ U l 6 n  + 9 ~ 5/8~l + 5 

t /16n  + 2 ~ L/Sn + 2~ U 1 6 n +  10 ~ L/8n + 6  

b/16n + 3 ~ b/8n + 3~ b/16n + 11 ~ l /8n  + 4  

It 16n + 4 ~ b/8n -b 4 ~ U16n  + 12 ~ /A8n + 3 

L/16n + 5 ~ ~ / 8 n +  5~ b/16n + 13 ---~ b / 4 n +  1 

U l 6 n  + 6 -~- ~/8n + 6~ U 1 6 n +  i 4  ~ b/4n + 2  

U 1 6 n +  7 ~ /-/4n + 1~ b/16n + 15 ~ L/4n + 3 

(2) 

and that 

(vn) satisfies (2) 

The first point is straightforward; the second point is longer to verify. To 
cut short a rather cumbersome proof, we shall only verify that the first 
relation in (2) holds for the sequence (d;,+2): Let 

! r o / 1~4 ! = d'o +2 ~ fA 0) 

un=dtn+2 for n = 0 ,  1, 2,..., 15 

By projection the same relations hold for the sequence (v~); hence (v,) can 
be recursively defined by these relations (2) and the initial values 
Vo, v~,..., v15. It remains to check that 
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for short 

Fn = g ,  + 1 g ~ " "  g o ( d ; )  

where gk---f'~k and we omit  the o's. 
Then, for n greater than or equal to 1, 

Fl~,, = g ~ ,  ~ ~ g ~6n g ,6,~ - ~ g~6,, - 2 " ' "  ( d'o) 

F4n = g4n + 1 g4,, g 4 n -  t g 4 n -  2" ' "  (d'o) 

The proper ty  of  the T h u e - M o r s e  sequence implies that  

g16n + 1 g16n gl6n - 1 g16n - 2 = g4n + 1 g4n g4n 1 g 4 n -  2 = h~ 

Moreover  one easily checks that for every choice of en= _+1 and 
e ,_ ~= + 1, the function h,  is a constant  function. 

Finally, for every n/> 0, Ft6~ = F4~ (the case n = 0 is trivial). 
After verifying the other 15 relations in (2) for Fn, we then conclude 

that  

u >/0, F~ = v, 

which was our  claim. 
We now conclude our  paper with an au toma ton  which generates the 

sequence (d" + z): 

1 0 

o o f - - ' - - .  
0 1 - -  J 

D T ( A )  -~ - 

T ( B )  -~ T ( D )  =- 0 

T ( C )  =- T ( E ) =  + 

R E F E R E N C E S  
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